
October 2019 | 9.7.37

Workshare Compare Server 9.7

Developer Guide

Workshare Compare Server 9.7 Developer Guide

2

Table of Contents

Chapter 1: Introduction...4

Introducing Workshare Compare Server... 5

Communicating with Workshare Compare Server .. 5

Chapter 2: Documentation and Examples ..6

Overview .. 7

Types of Comparison ..7

Choosing which type of comparison to run ..7

Immediate Comparisons... 10

GET request example ...10

POST request example ...13

Queued Asynchronous Comparisons ... 16

Making a queued comparison request...16

Handling the response to a queued comparison request ...17

Data Storage on Workshare Compare Server... 18

DVJS Comparisons .. 19

What is DVJS? ..19

Getting started with DVJS ...19

The DVJS APIs ...20

Starting DVJS comparisons...20

Displaying a DVJS comparison ...21

Customizing DVJS ..22

Customizing which elements of the UI are visible ..23

Customizing the language of the UI...23

Customizing the toolbar...25

Customizing the behavior of the toolbar ..26

Accept change functionality...30

Accept/Reject Changes from the API.. 33

Merging Multiple Modified Documents .. 34

POST request example ...35

Appendix A.Change Summary Information ..38

RedlineJSON.. 39

RedlineML .. 53

RedlineML Schema ...53

Workshare Compare Server 9.7 Developer Guide

3

Character set values ...60

ChangeT values ..61

Code Samples .. 61

Extracting change summary information..61

Introduction

4

Chapter 1: Introduction
This chapter describes the functionality provided by Workshare Compare Server and how
to communicate with Compare Server.

Note: In this document, the terms Workshare Compare Server and Workshare Compare
service are interchangeable. Workshare Compare Server is the name of the product but
where you find references to Workshare Compare service, it is in order to be technically
accurate.

Introduction

5

Introducing Workshare Compare Server

Workshare Compare Server is a .NET application that consists of Workshare’s tried and
tested comparison engine, and a series of RESTful APIs. It is a fast, performant and
robust document comparison machine that accepts two source documents (RTF, DOC,
DOCX, PDF, TXT, HTML), compares them, and provides the output as either:

1. A document, in the following formats: RTF, DOC, DOCX, PDF, TXT or track
change document.

2. A URL, that loads the comparison result into Workshare’s browser-based UI.

3. An JSON or XML change summary, detailing only the changes that have occurred,
and associated information about them.

Compare Server’s outputs are known as ‘redlines’, whether shown as a document or
within Workshare’s UI.

Using Compare Server, you can integrate Workshare’s comparison technology into your
application to:

 Provide extremely fast and robust document comparison, including change
identification and extraction.

 Verify and highlight all changes and differences between drafts and versions, no
matter how complex the document.

 Validate that all changes closely adhere to policies and procedures, and an
approved boilerplate.

Once installed, you can launch the bundled Swagger documentation into the browser, read
about each of the endpoints, and try them out. Compare Server comes bundled with
sample documents to facilitate this.

Additionally, the merge feature will accept an original document and multiple modified
documents and produce a merged document with all the changes shown as track
changes.

Communicating with Workshare Compare
Server

You can communicate with Workshare Compare Server over HTTP REST calls. To fully
benefit from this guide, you should have an understanding of RESTful APIs.

Documentation and Examples

6

Chapter 2: Documentation and
Examples
This chapter provides examples of GET and POST requests and information about
running different types of comparisons.

Documentation and Examples

7

Overview

The RESTful API endpoints are documented here: http://[your server name]/swagger.

Types of Comparison

 Classic vs DVJS comparisons

 Classic comparisons are performed by making calls to the api/Compare
endpoint and the result is a comparison in document format (DOCX/DOC/PDF)
or in data format (JSON as RedlineJSON or XML as RedlineML). The
comparison result is returned to the calling code which can take appropriate
actions to use it or make it available to an end user.

 DVJS comparisons are performed by making calls to the api/UICompare
endpoint and the result is a URL which can be viewed in a web browser to
show the comparison document and change summary information to the user.

 POST vs GET comparisons

 POST comparisons are performed by sending the content of the two
documents to be compared to Compare Server as part of an HTTP POST
request in multipart/form-data format.

 GET comparisons are performed by sending URLs from which the documents
to be compared can be retrieved to Compare Server as parameters on an
HTTP GET request.

 Immediate vs asynchronous queued comparisons

 Immediate comparisons are performed by making a single HTTP request
(either GET or POST). The server performs the comparison in response to
receiving the request and the result of the comparison is returned as the
response to the HTTP request. (Note that certain administrative configuration
options may cause the request to be delayed or refused if the server is too
busy.)

 Asynchronous queued comparisons are performed by making an HTTP request
(either GET or POST) to the ‘Enqueue’ method. For example,
/api/Compare/Enqueue or /api/UICompare/Enqueue. On receipt of the request
the server will place the comparison in its queue and return a URL that the
client code can use to check for the completion status of the comparison.
Comparisons are performed in the order that they are queued. When a
comparison is complete, the response to the status request is a URL that will
redirect to the location from which the result can be downloaded.

Choosing which type of comparison to run

The following questions can help you choose the most suitable way to integrate Compare
Server for your use case.

Documentation and Examples

8

Question 1: Do you have more than one modified document?

Answers Solution

Yes, I have a single original
document and multiple modified
versions from different authors.

See Merging Multiple Modified Documents for
further details.

Question 2: Where is the location of the documents you need to
compare?

Answers Solution

Your documents are already
located on a web server or other
web-based system and you can
construct a URL that will allow
them to be downloaded without
encountering additional security
prompts or requiring user
interaction.

In this case you can compare documents using
the HTTP GET method. You will need to construct
URLs that allow each of the documents to be
compared to be downloaded, and pass those
URLs as parameters to the comparison request.
Compare Server will download the documents
using the provided URLs and then perform the
comparison.

Your documents are located on a
web server or web-based system,
but require additional information
(cookies or login) to download.

In any of these cases you will need to use the
HTTP POST method when performing a
comparison. Your code will need to fetch the
content of the documents and include the content
of both in the comparison POST request, which
should be made in multipart/form-data format.

Your documents are located on the
local disk or storage of the device
requesting the comparison.

Your documents are located in
some other location.

Question 3: How do you intend to use the comparison result?

Answers Solution

You want to show the comparison
document to the user requesting it
in their web browser.

In this case you should make a comparison
request to the UICompare endpoint (DVJS
comparison) and redirect the browser location to
the URL specified in the ‘Location:’ header of the
response. This will load the comparison into the
browser and allow the user to view the document
and summary of changes. See DVJS
Comparisons for further details on customizing the
user experience.

Documentation and Examples

9

Answers Solution

You want to store or process the
comparison result as a document.

In these cases you should make a comparison
request to the Compare endpoint (classic
comparison) and choose an appropriate response
format (‘Pdf’ or ‘Docx’). Your code will be able to
retrieve the comparison result.

You want to allow the user to
download the comparison result as
a document.

You want to process data that
summarizes the changes between
the two documents that are being
compared.

In this case you should make a comparison
request to the Compare endpoint (classic
comparison) and choose the RedlineJSON
(comparison data as JSON) or RedlineML
(comparison data as XML) response format and
then process the resulting data as appropriate.

Question 4: How urgently do you need the result?

Answers Solution

The comparison is being run as
part of a background task and
reliability is more important than
turnaround time.

In this case you should use the asynchronous
queued comparison option to make requests. Send
requests to /api/Compare/Enqueue or
/api/UICompare/Enqueue to begin a comparison and
then poll the status link for completion. Note that your
server must be configured by the server administrator
to use an SQL database to store the queued jobs
otherwise jobs may be lost if the server or IIS restarts
(see Compare Server Admin Guide).

The comparison result is
needed as soon as possible.

In this case you should use the immediate
comparison options, sending requests to
/api/Compare or /api/UICompare. However see also
questions 4 and 5.

Question 5: Will you be comparing very large documents or large PDF
documents?

Answers Solution

Yes.

For these types of comparisons, you should consider
using the asynchronous queued requests. This type
of comparison may take some time to complete (from
30 seconds to many minutes) and using immediate
comparison requests may lead to timeouts in web
requests that are intermittent and difficult to debug.
Using asynchronous queued requests avoids this
problem.

Documentation and Examples

10

Question 6: How do you expect the server to be utilized?

Answers Solution

You expect the server to have to
deal with peaks of load which
exceed its capability to process
comparisons. For example, you
intend to perform batch processing
and submit large numbers of
comparisons in a short period of
time.

In this case you should consider using
asynchronous queued requests to ensure that
peaks of load are handled well with no risk of
dropped requests.

Immediate Comparisons

The immediate comparison API requests will all attempt to start the execution of the
comparison immediately when the request is received and will return the result of the
comparison as the response to the original HTTP request.

GET request example

In this example, the request compares two documents from source URLs and applies the
specified rendering options to the resulting redline. The redline is then saved to the current
directory as an RTF called GetTest.rtf.

Example CURL command

curl -X GET --header 'Accept: application/rtf' 'http://[your
server name]/api/Compare?originalSourceUrl=http%3A%2F%2Finstall.
workshare.com%2Fcompare%2FSampleOriginal.doc&modifiedSourceUrl=htt
p%3A%2F%2Finstall.workshare.com%2Fcompare%2FSampleModified.doc&out
putFormat=Rtf&renderingOptions=DETECT%20LIST%20NUMBERING%20CHANGES
%3D1%3BCOMPARE%20HEADERS%2FFOOTERS%3D0' -o GetTest.rtf

Explanation of the CURL command

Snippet Function

curl Beginning the request.

-X GET Type of request.

--header 'Accept:
application/rtf'

This part of the request is not required but if used, should
match the output format application. These can be found
on the Swagger page.

Documentation and Examples

11

Snippet Function

-o GetTest.rtf Tells the request to save the response as the named file in
the current directory. The format should request the
specified output format. For combined requests in output,
this should be .zip.

Explanation of request parameters

In the example CURL command above, the request URL is as follows:

Root

http://[your server name]/WorkshareCompareApi/api/compare

The root will vary according to what you selected during the installation.

Rest of query:

originalSourceUrl=http%3A%2F%2Finstall.workshare.com%2Fcompare%2FS
ampleOriginal.doc&modifiedSourceUrl=http%3A%2F%2Finstall.workshare
.com%2Fcompare%2FSampleModified.doc&outputFormat=Rtf&renderingOpti
ons=DETECT%20LIST%20NUMBERING%20CHANGES%3D1%3BCOMPARE%20HEADERS%2F
FOOTERS%3D0'

An explanation of each element of the request URL is in the table below.

Name Example value Comments

Server name http://[your server name]

Virtual
Directory
Path

WorkshareCompareApi If you install the Workshare Compare
API in the root of a new web site then
this component will not be needed in
the URL.

Endpoint /api/Compare

Documentation and Examples

12

Name Example value Comments

originalSour
ceUrl

http://install.workshare.com/
compare/SampleOriginal.doc

The URL from which to fetch the
original document. http:// and https://
are supported.

Note 1: The files need to be
available for HTTP/S requests.

Note 2: This parameter must be
URL Encoded before it’s included
in your request URL. You can
convert between decoded and
encoded URLs at this site:
http://meyerweb.com/eric/tools/den
coder/

modifiedSour
ceUrl

http://install.workshare.
com/compare/Sample
Modified.doc

The URL from which to fetch the
original document. http:// and https://
are supported.

Note: Follow the same guidance
as indicated in the notes for
originalSourceUrl.

outputFormat One of: Rtf (default); Wdf;
Doc; DocX; Pdf;
TrackChanges; RedlineMl;
RedlineMl,Rtf;
RedlineMl,Wdf;
RedlineMl,Doc;
RedlineMl,DocX;
RedlineMl,Pdf;
RedlineMl,TrackChanges;
RedlineJSON;
RedlineJSON,Rtf;
RedlineJSON,Wdf;
RedlineJSON,Doc;
RedlineJSON,DocX;
RedlineJSON,Pdf;
RedlineJSON,TrackChanges

The format of the returned
comparison. When more than one
format is specified (ie
RedlineMl,DocX) the result is
returned as a ZIP file containing both
formats. The default output format is
RTF if this option is not specified.

WDF is the comparison format used
by the Workshare Compare desktop
application (comparisons created in
WDF format can only be opened in
the Workshare Compare desktop
application).

RedlineMl is an XML-based format
and RedlineJSON is a JSON-based
format that describe the changes
between the two documents in an
easy-to-use manner (see Appendix
A: Change Summary Information).

http://meyerweb.com/eric/tools/dencoder/

Documentation and Examples

13

Name Example value Comments

renderingOpt
ions

DETECT LIST NUMBERING
CHANGES=1;COMPARE
HEADERS/FOOTERS=0'

Optional rendering options to
customize the comparison process
and the format of the comparison
document.

Rendering options are best
generated by creating a rendering set
using the Workshare Compare
desktop application. The contents of
the saved .set file can be passed as
the value for this parameter.
Semicolons can be used in place of \r
or \n as line separators in this
parameter.

Note: For more information about
rendering sets, see the Compare
Server Rendering Set Guide.

POST request example

In this example, the request compares two documents from the local machine and applies
the specified rendering options to the resulting redline. The redline is then saved to the
current directory as a DOC called PostTest.docx.

Example CURL command

curl -X POST --header 'Content-Type: multipart/form-data' --header
'Accept: application/rtf' -F outputFormat=Docx -F
"file1=@documents/Comp2.docx" -F "file2=@documents/Comp1.docx" -F
'renderingOptions=Display Workshare Compare Footers=1; Inserted
Text Color=8388736 ' 'http://[your server name]/api/Compare' -o
PostTest.docx

Explanation of the CURL command

Snippet Function

curl Beginning the request.

-X POST Type of request.

Documentation and Examples

14

Snippet Function

--header 'Content-Type:
multipart/form-data'

Format of the request.

Note: Must always be included for POST requests.

--header 'Accept:
application/rtf'

This part of the request is not required but if used,
should match the output format application. These can
be found on the Swagger page.

-o PostTest.docx Tells the request to save the response as the named
file in the current directory. The format should request
the specified output format. For combined requests in
output, this should be .zip.

Explanation of request parameters

In the example CURL command above, the request URL is as follows:

outputFormat=Docx -F "file1=@documents/Comp2.docx" -F
"file2=@documents/Comp1.docx" -F 'renderingOptions=Display
Workshare Compare Footers=1; Inserted Text Color=8388736 '
'http://[your server name]/api/Compare

An explanation of each element of the request URL is in the table below.

Name Example value Comments

Server name http://[your server name]

Endpoint /api/Compare

originalDocu
ment

file1=@documents/Comp2.d
ocx

The location of the original document
on the local system.

modifiedDocu
ment

file2=@documents/Comp1.d
ocx

The location of the modified
document on the local system.

Documentation and Examples

15

Name Example value Comments

outputFormat One of: Rtf (default); Wdf;
Doc; DocX; Pdf;
TrackChanges; RedlineMl;
RedlineMl,Rtf;
RedlineMl,Wdf;
RedlineMl,Doc;
RedlineMl,DocX;
RedlineMl,Pdf;
RedlineMl,TrackChanges;
RedlineJSON;
RedlineJSON,Rtf;
RedlineJSON,Wdf;
RedlineJSON,Doc;
RedlineJSON,DocX;
RedlineJSON,Pdf;
RedlineJSON,TrackChanges

The format of the returned
comparison. When more than one
format is specified (ie
RedlineMlAndXXX), the result is
returned as a .zip file containing both
formats. The default output format is
RTF if this option is not specified.

WDF is the comparison format used
by the Workshare Compare desktop
application (comparisons created in
WDF format can only be opened in
the Workshare Compare desktop
applicaion).

RedlineMl is an XML-based format
and RedlineJSON is a JSON-based
format that describe the changes
between the two documents in an
easy-to-use manner (see Appendix
A: Change Summary Information).

renderingOpt
ions

Display Workshare Compare
Footers=1; Inserted Text
Color=8388736

Optional rendering options to
customize the comparison process
and the format of the comparison
document.

Rendering options are best
generated by creating a rendering set
using the Workshare Compare
desktop application. The contents of
the saved .set file can be passed as
the value for this parameter.
Semicolons can be used in place of \r
or \n as line separators in this
parameter.

Note: For more information about
rendering sets, see the Compare
Server Rendering Set Guide.

Documentation and Examples

16

Queued Asynchronous Comparisons

The immediate comparison API requests described above will all attempt to start the
execution of the comparison immediately when the request is received and will return the
result of the comparison as the response to the original HTTP request. Depending on the
client being used to send the HTTP requests, timeouts may occur if the files to be
compared are large or the server is busy. In some cases, it may be difficult to adjust the
timeout limits of the HTTP requests being made, particularly if intermediate servers such
as a proxy server are involved.

The queued, asynchronous comparison API addresses the issues with HTTP timeouts and
also helps to manage server load when comparisons are submitted in batches.

Requests to the queued comparison endpoint are constructed identically to the GET and
POST requests that are sent to the immediate comparison endpoints described above.
The only differences are the URL to send the request to - which must have ‘/enqueue’
appended to it - and the response to the initial request – which is no longer the comparison
result.

Making a queued comparison request

To make a queued comparison request, follow the instructions in Immediate Comparisons
to make either a POST or GET comparison request, but send the request to:

http://[your server name]/WorkshareCompareApi/api/compare/enqueue

If your request is valid then you will immediately receive a response with an HTTP
response status code 202 Accepted status code, indicating that the comparison that you
have submitted has been allocated a place in the queue. If the request for a comparison is
obviously invalid in some way (for instance only one document is included) then you will
receive an appropriate error response to your request.

Note: Other errors (for example, the supplied URLs not being correct or the supplied
documents not being in a supported format) will not generate an error when the
comparison is queued as they only become apparent when the server attempts to run the
comparison. In these cases, the details of the error will be retrieved via the status polling
described below.

If you submit a queued GET comparison request then the URLs that specify the location of
the source documents will only be fetched once the comparison reaches the head of the
queue and is ready to execute. You should therefore ensure that if these URLs are
time-limited, they will not expire before the comparison reaches the head of the
comparison queue.

Documentation and Examples

17

Handling the response to a queued comparison request

The response to the queued comparison request includes a status URL.

Your code must inspect the ‘location:’ header of the response to recover the status URL
that your client code can use to monitor the progress of the queued comparison. The
location header will take the form:

location: http://[your server name]/WorkshareCompareApi
/api/Compare/<comparison id>/status

For example:

location: http://localhost/WorkshareCompareApi/api/Compare/
4c9ec86ec8edbadf5db41da5dd7850c695db9b2538f06216

/status

The status URL returned in the location header may then be polled intermittently by your
code to determine when the comparison is completed. You should avoid polling
continuously to avoid unnecessary load on Compare Server, although the server itself will
delay responding to polling requests where the comparison is not yet complete to limit
polling frequency.

Depending on the state of the comparison, you may receive one of the following
responses from the comparison status request:

Response Explanation

404 Not Found The comparison ID in the status URL is invalid.

404 Not Found The comparison referenced in the status URL has already
completed and been downloaded.

202 Accepted The comparison is still in the queue.

The response will contain the following custom headers:

 X-queued-for: <seconds in queue so far>

 X-queue-length: <number of comparisons in queue>

202 Accepted The comparison is being executed.

The response will contain the following custom header:

 X-processing-for: <seconds processing so far>

302 Found The comparison has completed.

The location header of the response will contain the URL from
which the comparison result can be downloaded.

An error (4XX or 5XX)
status code

The comparison failed.

The status reason phrase will contain more detail on why the
comparison failed.

Documentation and Examples

18

Note: When the comparison completes, the 302 Found response that redirects to the
download link for the comparison result may be handled automatically by your HTTP
client software. This means that your code may actually receive a 200 OK response with
the comparison result as the response body. You should either write code to cope with
this eventuality or disable automatically following redirects when making HTTP requests
to the status URL. You will need to check your HTTP library documentation to determine
how to disable automatically following redirects.

Once a queued comparison is completed, the server will only store the comparison result
for a limited period. The result is deleted after either of these two conditions is satisfied:

 One hour has passed since the comparison completed

 Fifteen minutes have passed since the first attempt to download the comparison
result was initiated.

If you try to request the status or result of a comparison after it has been deleted by the
server, then you will receive a 404 Not Found response from the server.

Data Storage on Workshare Compare Server

When comparisons are performed using immediate comparison API requests, the
documents to be compared and the comparison result file are not stored on the disk
storage of Compare Server except (in certain use cases) as temporary files which are
deleted when no longer needed.

When comparisons are performed using queued asynchronous comparison API requests,
the source documents and comparison results must be stored on disk while the
comparison is queued and waiting to be run and between comparison completion and
download of the comparison result. The following table indicates what data is stored on
disk and when it is removed.

Source documents –
POST comparisons

The source documents are stored from the time that the request
is submitted and are deleted when the comparison execution is
finished (either successful completion or due to a failure to
compare).

Source documents –
GET comparison

The source documents are not stored on disk; however the URLs
that are to be used to retrieve the source documents are stored
in the queue database.

Comparison result –
GET and POST
comparisons

The comparison result is stored from the time that the
comparison completes until it is deleted according to the rules
above.

Documentation and Examples

19

DVJS Comparisons

What is DVJS?

DVJS (short for DeltaView JavaScript) is a component of Workshare Compare Server that
allows comparisons to be viewed and reviewed in the user’s web browser. While it is
simple to take a PDF format comparison document and view it in the browser, DVJS
provides richer functionality such as change navigation, accept/reject changes, change
categorization, print comparison and potential for customization by the integrator.

Use of DVJS only requires a modern, standards-compliant, web browser, such as Chrome,
Firefox, Edge, Safari. No other software needs to be installed on the end user’s PC or
device.

Note: The only version of Internet Explorer that will work correctly is version 11; older
versions are not supported.

DVJS is designed to be integrated into existing web-based applications and workflows –
for instance it could be integrated into a web-based content management system or
intranet portal allowing documents stored in the system to be compared without requiring
them to be downloaded to a PC.

Getting started with DVJS

Compare Server ships with a very simple, sample comparison web page that allows users
to select and compare two documents located on their PC or device. This also provides
the best place to get started with understanding how DVJS works and how to customize
and integrate it into existing systems.

To start using the sample comparison web page:

1. In your web browser, navigate to: http://[your server name]/Workshare
CompareApi/compare

2. Follow the instructions to select two documents and compare them.

You may, if you wish, use the sample comparison page in production, either by pointing
your users to the URL given above or by taking, customizing and hosting on your own
server the following files:

http://[your server name]/WorkshareCompareApi/Content/deltaview.js

http://[your server name]/WorkshareCompareApi/js/demo-utilities.js

http://[your server name]/WorkshareCompareApi/js/scripts.js

http://[your server name]/WorkshareCompareApi/css/demo.css

http://[your server name]/WorkshareCompareApi/css/normalize.css

Documentation and Examples

20

In addition, you will need the HTML content returned from the request to:

http://[your server name]/WorkshareCompareApi/compare

You will need to adjust for any changes in the relative paths of these files and also change
the ‘compareServerUrl’ setting in scripts.js to point to the URL of your installed Compare
Server.

Note: The file ‘deltaview.js’ is a Workshare copyright and you must not modify it or use it
except in conjunction with Workshare Compare Server’s DVJS features. You may modify
and use the content of the other files listed above as the basis for your own integration to
the DVJS functionality.

The DVJS APIs

DVJS is based on two APIs that are implemented by Compare Server:

1. http://[your server name]/WorkshareCompareApi/api/uicompare

This API can be used to initiate comparisons that are to be shown in the browser
using DVJS. The uicompare API has all the options of the standard compare API
(GET and POST requests, immediate or queued comparisons). See below for
further information about using this API.

2. http://[your server name]/WorkshareCompareApi/api/comparison

This API provides the resources needed to render the comparison in the browser.
This API is reserved for the use of the deltaview.js front end code. It is deliberately
not documented and may be changed in future versions of Compare Server. You
should not make calls to this API from your code. You will not be eligible for support
on any issues you may encounter and future updates to Compare Server may
break your implementation.

Starting DVJS comparisons

The simplest way to begin using DVJS is to perform a comparison by making a request to
the uicompare API endpoint. All the options for performing a comparison against the
regular compare API endpoint are available (GET and POST requests, immediate or
queued comparisons). Refer to Immediate Comparisons and Queued Asynchronous
Comparisons for full details on the parameters available and other details required to make
a comparison request.

The response to a valid comparison request to the uicompare endpoint will have a 201
Created response status code and will contain a ‘location’ header giving the URL at which
the comparison result can be viewed.

Documentation and Examples

21

In the case of queued requests to the uicompare endpoint, you must follow the procedure
described in Queued Asynchronous Comparisons to check for the status of the
comparison. Once the comparison is complete, the status request will return with a 302
Found response status code and location header containing the URL at which the
comparison result can be viewed.

Displaying a DVJS comparison

To display the comparison result to the user, the simplest approach is to browse to the
URL that was obtained by performing the comparison. This will launch the DVJS redline
viewer inside the browser window with no customization. The user will be able to explore
the changes in the browser and download the resulting comparison in a variety of formats.

Note: The DVJS redline viewer runs in a browser. It is recommended to access it from a
desktop or laptop rather than a mobile device.

Note: There is no option to send the comparison via email using a desktop email client
(for example Microsoft Outlook). This is not present because there is no widely supported
mechanism for a web page to create an email with an attachment or content using a
‘mailto:’ link.

The toolbar provides the following options by default:

Documentation and Examples

22

Customizing DVJS

For more control over the options available to the user when viewing the comparison, it is
possible to create a web page which contains and customizes the DVJS viewer.
Customizations can include

 Removing options from the toolbar in order to prevent certain user actions such as
downloading the comparison result.

 Adding options to the toolbar in order to allow the user to take actions with the
comparison that are specific to the integration. For example:

 Saving the comparison back into a CMS or Intranet portal system

 Emailing the comparison via a suitable webmail platform

The code below shows a minimal HTML page that will show the DVJS UI for a
comparison, which can form a starting point for customization.

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8"><meta name="viewport"
content="width=device-width,initial-scale=1">

 <title>DeltaView Document Comparison</title>

 <link href="path/to/deltaview.css" rel="stylesheet">

 <script type="text/javascript"
src="path/to/deltaview.js"></script>

 <script type="text/javascript">

 document.addEventListener("DOMContentLoaded",
function(event) {

 var options = {

 deltaviewId: 'deltaview-goes-here'

 };

 window.deltaview.init(options);

 // you must get the comparisonURL to this code – maybe in
a parameter of the URL

 window.deltaview.render(comparisonURL);

 });

 </script>

 </head>

Documentation and Examples

23

 <body>

 <div id="deltaview-goes-here"></div>

 </body>

</html>

In order to turn the code above into a working sample, the following changes must be
made:

 Ensure that the paths to the deltaview.js and deltaview.css files are set correctly.

 Determine and implement a way for the comparisonURL variable to be set with the
URL returned from the request to the uicompare endpoint. For testing purposes
you may wish to perform a call to uicompare using the ‘swagger’ API test web page
and then hard-wire the comparisonURL variable to the result.

Customizing which elements of the UI are visible

The visible elements of the UI can be customized by setting display options before calling
window.deltaview.init. For example:

var options = {

 deltaviewId: 'deltaview-goes-here',

 display: {

toolbar: true,

statistics: false,

redline: true,

changeSummary: false,

 }

};

Customizing the language of the UI

The UI language can be changed when calling window.deltaview.init by passing a second
parameter. For example:

window.deltaview.init(options, window.deltaview.languages.italian
);

Available predefined languages are currently: english, italian, french, spanish, mandarin.
You can also define your own language.

Documentation and Examples

24

If you want to add a custom language then you can define it in an object with the following
structure and pass it as the second parameter to deltaview.init():

window.dvlanguage = {

 toolbar: {

 pdf: 'Save as PDF',

 docx: 'Save as DOCX',

 tracked: 'Tracked Changes',

 print: ‘Print’,

 summary: 'Change Summary',

 previous: 'Previous Change',

 next: 'Next Change'

 },

 changeList: {

 zeroState: 'Your documents have no changes.',

 totalChanges: 'total changes',

 originalDocument: 'Original',

 modifiedDocument: 'Modified',

 page: 'Page',

 changedContent: 'Changed content',

 categories: 'Categories'

 },

 changeListCategories: {

 footnote: 'footnote',

 endnote: 'endnote',

 header: 'header',

 footer: 'footer',

 //matching: 'matching', // not currently displayed

 suggested: 'suggested',

 //categorized: 'categorized', // not displayed - all
changes are children of this

 numbering: 'numbering',

 boilerplate: 'boilerplate',

 capitalization: 'capitalization',

Documentation and Examples

25

 uncategorized: 'Content', // default first category
containing all ungrouped changes

 punctuation: 'punctuation',

 style: 'style',

 font: 'font',

 //whitespace: 'whitespace', //not currently displayed

 comment: 'comment'

 },

 loading: {

 pages: 'Loading pages…',

 comparing: 'Comparing…',

 firstDelay: 'Your documents are being compared. Please
be patient – comparing large documents can take some time.',

 secondDelay: 'Sorry for the delay, your documents are
still being compared. Please be patient – comparing large
documents can take some time.',

 error: 'Your documents have not been compared. Try
refreshing your page or start your comparison again.'

 }

};

Customizing the toolbar

The following buttons are defined in the default toolbar and can be shown, hidden or
customized by configuring the options before calling window.deltaview.init.

Button Default Action

Save as PDF Download comparison in PDF format.

Save as DOCX Download comparison in DOCX format.

Track changes Download comparison in DOCX format with changes shown as
tracked changes (not supported for comparisons with PDF source
documents).

Email No action (placeholder to allow email integration with webmail
systems).

Print Print the comparison.

Previous change Navigate to previous change.

Next change Navigate to next change.

Documentation and Examples

26

Note: The About button is also configurable.

For example, to hide the pdf button and show the print button:

var toolbar = {

 pdf: {display: false },

 print: {display: true },

};

var options = {

 deltaviewId: 'deltaview-goes-here',

 display: {

 homeButtons: toolbar,

 toolbar: true,

 redline: true,

 statistics: false,

 changeSummary: false,

 about: true

 }

};

Customizing the behavior of the toolbar

Deltaview.js is written so that it can be embedded in different applications, or integrations
into third party systems. These applications are needed because deltaview.js cannot
initiate the comparison itself. Once the comparison is rendered then there might be a
requirement to handle the actions of the toolbar buttons differently to the default behavior
in a browser.

What the toolbar contains

The deltaview.js toolbar contains a number of predefined buttons. The toolbar can be
customized to control which buttons are displayed and the default action of some of the
buttons can overridden.

The visibility, labelling and what will happen when the buttons are clicked is defined in the
"homeButtons" part of the options object passed into deltaview.init().

Documentation and Examples

27

Visibility of buttons

The most important attribute of a button configuration is whether it is displayed or not. If it
is not displayed then all other attributes are irrelevant.

Each button definition has a "display" boolean value. The default actions for the button will
be used if only display:true is specified. The default visibility of buttons is detailed in each
button's description below.

PDF button

This button causes the server to generate a PDF of the comparison redline.

Default action: “download”

Default configuration

"pdf" : {
 "display" : true,
 "text" : "Save as PDF",
 "action" : "download"
}

You can override the action with a function:

"pdf" : {
 "display" : true,
 "text" : "Save as PDF",
 "action" : function (urlForPdf) {
 alert('PDF can be downloaded from ' + urlForPdf);
 }
}

Note: The callback is invoked after making a call to the server to generate the PDF. Only
if this call succeeds will the callback be invoked.

DOCX button

This button causes the server to generate a DOCX of the comparison redline.

Default action: “download”

Default configuration:

"docx" : {
 "display" : true,
 "text" : "Save as DOCX",
 "action" : "download"
}

Documentation and Examples

28

You can override the action with a function:

"docx" : {
 "display" : true,
 "text" : "Save as DOCX",
 "action" : function (urlForDocx) {
 alert('DOCX can be downloaded from ' + urlForDocx);
 }
}

Note: The callback is invoked after making a call to the server to generate the DOCX.
Only if this call succeeds will the callback be invoked.

Tracked button

This button causes the server to generate a DOCX of the comparison redline but with all
the changes applied as tracked changes in the Word document.

Default action: “download”

Default configuration:

"tracked" : {
 "display" : true,
 "text" : "Track changes",
 "action" : "download"
}

You can override the action with a function:

"tracked" : {
 "display" : true,
 "text" : "Track changes",
 "action" : function (urlForTrackedDocx) {
 alert('DOCX with tracked changes can be downloaded from '
+ urlForTrackedDocx);
 }
}

Note: The callback is invoked after making a call to the server to generate the DOCX
with tracked changes. Only if this call succeeds will the callback be invoked.

Print button

This button generates a PDF of the comparison redline on the server which is returned in a
web request suitable for viewing in a browser ready for printing. If possible, the browser’s
print capability is automated. If not, the PDF view is opened in a new tab.

Documentation and Examples

29

You can override the action with a function:

"print" : {
 "display" : true,
 "text" : Print",
 "action" : function (urlForViewablePDF) {
 alert('PDF of comparison can be viewed or printed from '
+urlForViewablePDF);
 }
}

Note: The callback is invoked as soon as the button is clicked.

Next button

This button navigates the UI to highlight the next change or change group. It highlights the
change in the change summary and the redline.

It can be hidden:

"next" : {
 "display" : false,
 "text" : "Next change"
}

Previous button

This button navigates the UI to highlight the previous change or change group. It highlights
the change in the change summary and in the redline.

It can be hidden:

"next" : {
 "display" : false,
 "text" : "Previous change"
}

Example

When a comparison is performed using one of the UICompare endpoints a URL location is
returned. This is not a URL for viewing the comparison - it is the root part of URLs that
deltaview.js will use to display the comparison.

We have provided a sample page that will use deltaview.js to display the comparison. This
HTML page is the one that is returned when a web browser tries to access that
comparison ID URL.

The source of that page contains example code that shows buttons being hidden or
shown.

Documentation and Examples

30

Accept change functionality

By default, accept change functionality is turned on so the Compare web UI is enriched
with:

 Checkboxes next to changes that can be applied

 An action button at the bottom of the change summary

Once the user has selected at least one change to be applied then the action button is
enabled.

When the user clicks the action button, Compare Server makes a copy of the original
document and applies only the selected changes. This process can take a few seconds.

When the new file is available, the success callback function (as provided in the
initialization of deltaview.js) is invoked with a URL location from which the file can be
downloaded.

Documentation and Examples

31

The user can then further change the selection of changes and generate subsequent files
from the comparison.

The text used on the additional controls for accepting changes can be customized. You
can do this by specifying replacement language strings in the language object which is
provided to the deltaview.init() function.

The text strings for accept change will appear in the language file like this:

var language = {

 toolbar: {

 pdf: "Save as PDF",

 docx: "Save as DOCX",

 tracked: "Track changes",

 summary: "Change summary",

 previous: "Previous change",

 next: "Next change"

 },

 acceptedChanges: {

 workflowStates_idle: "Accept selected changes",

 workflowStates_generating: "Saving selected changes to new
document...",

 workflowStates_sending: "Saving selected changes to new
document...",

 workflowStates_success: "Changes successfully applied.",

 workflowStates_error: "Unable to apply selected changes."

 },

 changeList: {

 zeroState:

 "There are no changes between the original and modified
documents.",

 totalChanges: "total changes",

 originalDocument: "Original",

 modifiedDocument: "Modified",

 page: "Page",

 changedContent: "Changed content",

 categories: "Categories"

Documentation and Examples

32

 },

 changeSummary: {

 repeatedToggler: "matching changes for "

 },

 changeListCategories: {

 footnote: "footnote",

 endnote: "endnote",

 header: "header",

 footer: "footer",

 matching: "matching",

 suggested: "suggested",

 categorized: "categorized",

 numbering: "numbering",

 boilerplate: "boilerplate",

 capitalization: "capitalization",

 uncategorized: "content",

 punctuation: "punctuation",

 style: "style",

 font: "font",

 whitespace: "whitespace",

 comment: "comment",

 spelling_corrections: "spelling corrections",

 word_variations: "word variations"

 }

};

Documentation and Examples

33

Accept/Reject Changes from the API

If you don’t use DVJS to display the comparison, but write your own application, you can
request Compare Server to generate a new version of the original document with selected
changes accepted. To do this, you need to submit the following to Compare Server:

 Source documents (original and modified)

 Comparison (redline or redlineML)

 List of changes to accept (comma separated list of change numbers)

Your application will have to enable users to select which changes they want to accept.

Example CURL command

curl -X POST "http://localhost:49334/api/ApplyChanges" -H "accept:
application/msword" -H "Content-Type: multipart/form-data" -F
"originalDocument=@Original.docx;type=application/vnd.openxmlforma
ts-officedocument.wordprocessingml.document" -F
"modifiedDocument=@Modified.docx;type=application/vnd.openxmlforma
ts-officedocument.wordprocessingml.document" -F
"redlineML=@redlineML.xml;type=text/xml" -F "changeNumbers=1,2

Explanation of request parameters

The example CURL command above includes the following parameters:

Name Type Comments

originalDocument File The document used as the original document in a
previously performed comparison.

modifiedDocument File The document used as the modified document in a
previously performed comparison.

redlineML File The result of the previously performed comparison in
redlineML format.

ChangeNumbers String A list of comma separated integers corresponding to
the change number to be applied.

Note: The change numbers refer to the numbered
changes listed in the redlineML comparison.

asTrackChanges Boolean If true, the output should be a document with track
changes

Note: The three File parameters must be identical to those used in/from a previous
comparison.

Documentation and Examples

34

Response

Compare Server generates a DOCX file which is a new version of the original document
with the specified changes accepted. If there are any errors, they are indicated in a
header:

 changesThatFailedToApply: If a change failed to apply, the header will include a
list of change numbers that failed to apply.

 changesThatWereOutOfRange: If change numbers are out of range, for example,
there is no change with that number, the header will include a list of change
numbers that were out of range

Merging Multiple Modified Documents

The merge API provides the ability to merge changes made by multiple authors to a single
version of document. Multiple modified documents are merged together into a single track-
changed representation that can then be used for review or further evolution of the
document.

The situation that can be solved with this API can be seen in the diagram below.

In order to use the API, the base document version and all edited versions to be merged
must be posted as a single multipart/form-data request to the API endpoint. The result will
be a document in .docx format that contains the changes made by the various authors as
track changes.

The base document from which the edited versions were derived must be supplied to this
API in docx or doc format. The edited versions must be supplied in docx, doc or RTF
format. This API does not support operations on documents in PDF format or on
documents that are password-protected.

The role of the posted documents in the merge process is determined by their order in the
multipart/form-data request. The first document in the request is used as the base
document version and all other documents are used as edited versions.

Base Document
Version

Edited Version
from Author 1

Edited Version
from Author 2

...

(optionally more
edited versions)

Documentation and Examples

35

If the parts of the request containing the edited documents are given names then those
names are used as the author names for the track changes in the merged document. For
instance:

------boundary

Content-Disposition: form-data; name="author name";
filename="edited1.docx"

Content-Type: application/vnd.openxmlformats-
officedocument.wordprocessingml.document

... contents of file goes here ...

------boundary

if the author name is not specified in this way, then the author name will be extracted from
the metadata of each edited document (the ‘last author’ metadata item will be used).

This API does not allow the output format or the rendering options to be configured by the
end user.

Under some circumstances, the process may complete and give a merged result but it
may have been impossible to represent all of the changes made by the editors in the
merged document (perhaps because some of the changes made by one editor clashed
with those made by another editor). This case can be detected by checking the response
for the presence of a warning header.

Warning: 199 http://[your server name]/api/Merge/warnings/[long
alphanumeric id]

If the warning header is present then you should fetch the URL included in the warning
header. The contents of this URL will describe in JSON format details of the changes that
could not be represented in the merged document.

Note: This API will function with a single baseline document and a single edited
document, but in this case it will give results identical to those expected from performing
a comparison of those two documents with the output format set as track changes.

POST request example

In this example, the request merges three documents – baseline.docx, edited1.docx and
edited2.docx – and outputs single document - merged-docx – showing all changes as
track changes.

Documentation and Examples

36

Example CURL command

curl -X POST --header 'Content-Type: multipart/form-data' --header
'Accept: application/vnd.openxmlformats-
officedocument.wordprocessingml.document' -F
"basedoc=@documents/baseline.docx" -F
"author1=@documents/edited1.docx" -F
"author2=@documents/edited2.docx" 'http://[your server
name]/api/Merge' -o Merged.docx

Explanation of the CURL command

Snippet Function

curl Beginning the request.

-X POST Type of request.

--header 'Content-Type:
multipart/form-data'

Format of the request.

Note: Must always be included for POST requests.

--header 'Accept:
application/vnd.openxml
formats-
officedocument.wordproc
essingml.document '

This part of the request is not required but if used,
should match the output format application. These can
be found on the Swagger page.

-o Merged.docx Tells the request to save the response as the named
file in the current directory.

Explanation of request parameters

In the example CURL command above, the request parameters and URL
are as follows:

-F "basedoc=@documents/baseline.docx" -F
"author1=@documents/edited1.docx" -F
"author2=@documents/edited2.docx" 'http://[your server
name]/api/Merge'

An explanation of each element of the request URL is in the table below.

Name Example value Comments

Server name http://[your server name]

Endpoint /api/Merge

Documentation and Examples

37

Name Example value Comments

Baseline
document

basedoc=@documents/baseli
ne.docx

The location of the baseline
document on the local system.

First Edited
Document

author1=@documents/edited
1.docx

The location of the first edited
document on the local system.

Second Edited
Document

author2=@documents/edited
2.docx

The location of the second edited
document on the local system.

… optionally
more edited
documents

Change Summary Information

38

Appendix A. Change Summary
Information
This appendix describes the schema for the change summary produced with a comparison
and the character set values.

Change Summary Information

39

RedlineJSON

RedlineJSON is a format for extracting change summary information. It contains the entire
content of the Redline document in an easy-to-work-with JSON format.

Object
Type

_type
specification

Contains
Content

May have
IsInserted/
IsDeleted fields

Notes

Document redlinedocument Yes No Content will be an array
of sections. Options
contains the rendering
options used

Section section Yes Yes ‘headersandfooters’ field
contains the headers
and footers for the
section

Paragraph paragraph Yes Yes The font listed is the
most used font in the
paragraph

Text No _type field No No The actual text is in the
‘text’ field. May contain a
‘font’ field if the font
differs from the
paragraph font.

List
Number

listnumber No No Contains ‘text’ and
optional ‘font’ fields

Change change Yes No The ‘type’ and ‘number’
fields contain the
change’s type
(insertion,deletion etc)
and number respectively

Table table No Yes Has a ‘rows’ field that
contains the list of rows
in the table

Table
Row

row No Yes Cells field Contains a list
of cells in the row

Table Cell cell Yes No Status field contains info
on whether the cell is
insert/deleted

Foot Note footnote Yes Yes

End Note endnote Yes Yes

Change Summary Information

40

Object
Type

_type
specification

Contains
Content

May have
IsInserted/
IsDeleted fields

Notes

Header header Yes Yes The type field of a
header or footer can be
‘main’, ‘first’, ‘even’ or
‘odd’ (*check)

Footer footer Yes Yes

Bookmark Bookmark No No A bookmark object has
fields ‘name’ and
‘isstart’. When ‘isstart’ is
false the object
represents the end of the
bookmark

Comment comment Yes Yes

Field field No Yes The ‘instruction’ and
‘result’ fields contain the
details of the content of
the document field

Field
Instruction

fieldinst Yes No

Field
Result

fieldresults Yes No This contains the content
of the field that is
actually displayed as
part of the document

Shape shape Yes This represents a
drawing or text box in
the document

Picture pict Yes This represents an
image in the document

Other
Document
Feature

blob No Any other document
feature not handled
above

Change Summary Information

41

{

 "_type": "redlinedocument",

 "options": {

 "FaultTolerantComparison": false,

 "IgnoreNumberedListStyle": false,

 "SingleColumnConversionFromPdf": false,

 "NoHeadersFootersConversionFromPdf": false,

 "IgnoreImagesWhenReadingSourceDocs": false,

 "IgnoreEmbeddedObjectsAndImagesWhenReadingSourceDocs":
false,

 "ShowStatistics": true,

 "ShowSummary": false,

 "InfoTablesAtStart": false,

 "ShowDeletionSummaryTable": false,

 "ShowRedlineOptionsSummaryTable": false,

 "ShowFilenamesInStatsTable": true,

 "CompareImages": false,

 "DetectFontChanges": false,

 "ShowChangeNumbers": false,

 "ChangeNumberBeforeChange": false,

 "DetectMoves": true,

 "CompressDeletionsToSingleCharacter": false,

 "InsertChangeMarkersInCells": true,

 "IgnoreChangesInTablesEntirely": false,

 "CompareTablesAtTheCellLevel": true,

 "ShowModifiedTableOnly": false,

 "ShowModifiedTableOnlyWithNoHighlighting": false,

 "DetectListNumberChanges": true,

 "UseWorkshareComparisonFooter": false,

 "CompareHeaderAndFooters": true,

 "CompareAtCharacterLevel": false,

 "CompareTextBoxContent": true,

 "DetectChangesToFieldCodes": true,

 "MakeFootersBlackAndWhite": false,

Change Summary Information

42

 "MakeHeadersBlackAndWhite": false,

"TurnSelectedFieldsToTextToAllowChangesInFieldResultToBeShown":
false,

 "DetectNoteNumberingChanges": true,

 "DetectChangesToComments": false,

 "DeletionReplacementCharacter": "",

 "DetectWhitespaceChanges": true,

 "DetectParagraphChanges": false,

 "ShowDeletionsAdjacentToMovesAtTheMoveDestination": false,

 "CompareCaseInsensitive": false,

 "CompareNumbersAtCharacterLevel": false,

 "CompareFootnotes": true,

 "DetectParagraphStyleChanges": false,

 "DetectCharacterStyleChanges": false,

 "ParagraphTextMatchThresholdPercent": 10,

 "CellInsertColor": "#CCCCFF",

 "CellDeleteColor": "#FFCCCC",

 "CellMoveColor": "#CCC0CC",

 "CellMergeColor": "#FFFFCC",

 "CellPaddingColor": "Silver",

 "Insertion_TextDecoration": "DoubleUnderline",

 "InsertionSurroundingStartChar": "",

 "InsertionSurroundingEndChar": "",

 "InsertionTextColor": "Blue",

 "InsertionBackColor": "",

 "Deletion_TextDecoration": "Strikethrough",

 "Deletion_SurroundingStartChar": "",

 "Deletion_SurroundingEndChar": "",

 "Deletion_TextColor": "Red",

 "Deletion_BackColor": "",

 "MoveSource_TextDecoration": "Strikethrough",

 "MoveSource_SurroundingStartChar": "",

 "MoveSource_SurroundingEndChar": "",

Change Summary Information

43

 "MoveSource_TextColor": "#00C000",

 "MoveSource_BackColor": "",

 "MoveDestination_TextDecoration": "DoubleUnderline",

 "MoveDestination_SurroundingStartChar": "",

 "MoveDestination_SurroundingEndChar": "",

 "MoveDestination_TextColor": "#00C000",

 "MoveDestination_BackColor": "",

 "FormatChange_SurroundingStartChar": "",

 "FormatChange_SurroundingEndChar": "",

 "FormatChange_TextColor": "",

 "FormatChange_BackColor": "",

 "ChangeNumber_TextDecoration": "Superscript",

 "ChangeNumber_TextColor": "Black",

 "StyleLabel_TextColor": "Black",

 "StyleChange_TextDecoration": "Outline",

 "StyleChange_TextColor": "Black",

 "StyleChange_BackColor": "White",

 "StyleChangedSurroundingStartChar": "",

 "StyleChangedSurroundingEndChar": "",

 "RenderingSetName": "Unknown",

 "OriginalDocId": null,

 "ModifiedDocId": null,

 "WriteDVBookmarks": true,

 "DisableFieldFlattening": false,

 "FlattenIfFields": false,

 "ChangeBarsOnRight": false,

 "ChangeBarsOnLeft": true,

 "RemovePagesWithoutChanges": false

 },

 "content": [

 {

 "_type": "section",

 "headersandfooters": [

 {

Change Summary Information

44

 "_type": "footer",

 "type": "main",

 "content": [

 {

 "_type": "paragraph",

 "font": "Times New Roman",

 "content": [

 {

 "text": "\t"

 },

 {

 "_type": "field",

 "instruction": {

 "_type": "fieldinst",

 "content": [

 {

 "text": " PAGE "

 }

]

 },

 "result": {

 "_type": "fieldresult",

 "content": [

 {

 "_type":
"paragraph",

 "content": [

 {

 "font":
"Times New Roman",

 "text":
"16"

 }

]

Change Summary Information

45

 }

]

 }

 }

]

 },

 {

 "_type": "paragraph"

 }

]

 }

],

 "content": [

 {

 "_type": "paragraph",

 "font": "Arial",

 "content": [

 {

 "text": "Dear "

 },

 {

 "_type": "change",

 "number": 1,

 "type": "deletion",

 "content": [

 {

 "text": "Sirs"

 }

]

 },

 {

 "_type": "change",

 "number": 2,

 "type": "insertion",

Change Summary Information

46

 "content": [

 {

 "text": "Sir/Madam"

 }

]

 },

 {

 "text": ","

 }

]

 },

 {

 "_type": "paragraph",

 "font": "Arial",

 "content": [

 {

 "_type": "listnumber",

 "text": "1.\t"

 },

 {

 "text": "This arrangement letter sets
out the scope and limitations of the work to be performed by us in
related with the above transaction, namely the proposed issue of [
] (“the issue”) which will involve the preparation by the issuer,
and for which the issuer will be solely responsible, of an offering
circular [in accordance with the listing rules of the [relevant]
stock exchange]. This letter is written in the context of the
respective roles of the directors of the issuer, the head manager
(“the lead manager”), the other managers (as defined in paragraph 2
below) and ourselves."

 }

]

 },

 {

 "_type": "paragraph"

 },

Change Summary Information

47

 {

 "_type": "table",

 "rows": [

 {

 "_type": "row",

 "cells": [

 {

 "_type": "cell",

 "content": [

 {

 "_type": "paragraph",

 "content": [

 {

 "font":
"Arial",

 "text": "JAN"

 }

]

 }

]

 },

 {

 "_type": "cell",

 "column": 1,

 "content": [

 {

 "_type": "paragraph",

 "content": [

 {

 "font":
"Arial",

 "text": "FEB"

 }

]

Change Summary Information

48

 }

]

 }

]

 },

 {

 "_type": "row",

 "cells": [

 {

 "_type": "cell",

 "content": [

 {

 "_type": "paragraph",

 "content": [

 {

 "font":
"Arial",

 "text": "31"

 },

 {

 "_type":
"change",

 "number": 43,

 "type":
"insertion",

 "content": [

 {

 "font":
"Arial",

 "text":
"st"

 }

]

 }

]

Change Summary Information

49

 }

]

 },

 {

 "_type": "cell",

 "column": 1,

 "content": [

 {

 "_type": "paragraph",

 "content": [

 {

 "font":
"Arial",

 "text": "28"

 }

]

 }

]

 }

]

 }

]

 },

 {

 "_type": "paragraph",

 "isdeleted": true

 },

 {

 "_type": "paragraph",

 "font": "Arial",

 "content": [

 {

 "text": "Applicable Law and
Jurisdiction"

Change Summary Information

50

 }

]

 },

 {

 "_type": "paragraph",

 "font": "Times New Roman",

 "content": [

 {

 "_type": "listnumber",

 "text": "29.\t"

 },

 {

 "font": "Arial",

 "text": "This arrangement letter shall
be governed by, and construed in accordance with, [specify country
(other than the us) whose laws govern the subscription agreement"

 },

 {

 "_type": "change",

 "number": 49,

 "type": "deletion",

 "content": [

 {

 "text": "7"

 }

]

 },

 {

 "_type": "change",

 "number": 50,

 "type": "insertion",

 "content": [

 {

 "text": "6"

Change Summary Information

51

 }

]

 },

 {

 "_type": "footnote",

 "content": [

 {

 "_type": "paragraph",

 "content": [

 {

 "_type": "change",

 "number": 51,

 "type": "deletion",

 "content": [

 {

 "font": "Times
New Roman",

 "text": "7"

 }

]

 },

 {

 "_type": "change",

 "number": 52,

 "type": "insertion",

 "content": [

 {

 "font": "Times
New Roman",

 "text": "6"

 }

]

 },

 {

Change Summary Information

52

 "font": "Times New
Roman",

 "text": " \tThe law of
the Subscription Agreement governs relations between the Managers
and the Issuer. Where the law governing the Subscription Agreement
is not the law of a country with developed jurisprudence in
international financial transactions, the parties will agree on a
suitable alternative law to govern the relations between them
established by this letter."

 }

]

 }

]

 },

 {

 "font": "Arial",

 "text": "] law. "

 }

]

 }

]

 }

]

}

Change Summary Information

53

RedlineML

RedlineML is a format for extracting change summary information. It contains the entire
content of the Redline document in an easy-to-work-with XML format.

RedlineML Schema

<?xml version="1.0" encoding="utf-8"?>

<xs:schema targetNamespace="http://workshare.com/2010/RedlineML"

 elementFormDefault="qualified"

 xmlns="http://workshare.com/2010/RedlineML"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

>

 <xs:element name="document" type="documentT"/>

 <xs:simpleType name="cellStatusT" final="restriction" >

 <xs:restriction base="xs:string">

 <xs:enumeration value="normal" />

 <xs:enumeration value="inserted" />

 <xs:enumeration value="deleted" />

 <xs:enumeration value="moveSource" />

 <xs:enumeration value="moveDestinate"/>

 <xs:enumeration value="dead"/>

 <xs:enumeration value="padding"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:group name="content">

 <xs:sequence>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element ref="paraMarker"/>

 <xs:element ref="change"/>

 <xs:element ref="field"/>

Change Summary Information

54

 <xs:element ref="bkmk"/>

 <xs:element name="table" type="tableT"/>

 <xs:element name="shape" type="shapeT"/>

 <xs:element name="blob" type="blobT"/>

 <xs:element name="pict" type="blobT"/>

 <xs:element name="run" type="runT"/>

 <xs:element ref="endNote"/>

 <xs:element ref="footNote"/>

 <xs:element ref="textbox"/>

 <xs:element ref="comment"/>

 </xs:choice>

 </xs:sequence>

 </xs:group>

 <xs:attributeGroup name="insertedDeletedAttrs">

 <xs:attribute name="isInserted" type="xs:boolean"
use="optional" default="false"/>

 <xs:attribute name="isDeleted" type="xs:boolean" use="optional"
default="false"/>

 </xs:attributeGroup>

 <xs:group name="section">

 <xs:sequence>

 <xs:element type="sectionMarkerT" name="sectionMarker"/>

 <xs:group ref="content"/>

 </xs:sequence>

 </xs:group>

 <xs:group name="changeContent">

 <xs:sequence>

 <xs:choice minOccurs="0" maxOccurs="unbounded">

 <xs:element ref="paraMarker"/>

 <xs:element ref="field"/>

 <xs:element ref="bkmk"/>

Change Summary Information

55

 <xs:element name="shape" type="shapeT"/>

 <xs:element name="blob" type="blobT"/>

 <xs:element name="pict" type="blobT"/>

 <xs:element name="run" type="runT"/>

 <xs:element ref="endNote"/>

 <xs:element ref="footNote"/>

 <xs:element ref="textbox"/>

 <xs:element ref="comment"/>

 </xs:choice>

 </xs:sequence>

 </xs:group>

 <xs:complexType name="shapeT">

 <xs:group ref="content"/>

 <xs:attributeGroup ref="insertedDeletedAttrs"/>

 </xs:complexType>

 <xs:complexType name="blobT">

 <xs:attributeGroup ref="insertedDeletedAttrs"/>

 </xs:complexType>

 <xs:element name="change" type="changeT"/>

 <xs:complexType name="changeT" >

 <xs:group ref="changeContent"/>

 <xs:attribute name="number" type="xs:integer" use="required"/>

 <xs:attribute name="type" type="xs:integer" use="required"/>

 <xs:attribute name="crossref" type="xs:integer"
use="optional"/>

 </xs:complexType>

 <xs:complexType name="documentT">

 <xs:sequence>

 <xs:group ref="content"/>

Change Summary Information

56

 <!--sadly the compositor can spit out content before its
first section marker-->

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:group ref="section"/>

 </xs:sequence>

 </xs:sequence>

 <xs:anyAttribute/>

 </xs:complexType>

 <xs:complexType name="sectionMarkerT">

 <xs:sequence>

 <xs:sequence minOccurs="0" maxOccurs="unbounded">

 <xs:choice>

 <xs:element name="header" type="headerfooterT"/>

 <xs:element name="footer" type="headerfooterT"/>

 </xs:choice>

 </xs:sequence>

 </xs:sequence>

 <xs:attributeGroup ref="insertedDeletedAttrs"/>

 </xs:complexType>

 <xs:complexType name="tableT">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="row" type="rowT"/>

 </xs:sequence>

 <xs:attributeGroup ref="insertedDeletedAttrs"/>

 </xs:complexType>

 <xs:complexType name="rowT">

 <xs:sequence minOccurs="1" maxOccurs="unbounded">

 <xs:element name="cell" type="cellT"/>

 </xs:sequence>

 <xs:attributeGroup ref="insertedDeletedAttrs"/>

 </xs:complexType>

Change Summary Information

57

 <xs:complexType name="cellT">

 <xs:group ref="content"/>

 <xs:attribute name="cellStatus" type="cellStatusT"
use="optional" default="normal"/>

 <xs:attribute name="isInsertedColumn" type="xs:boolean"
use="optional" default="false"/>

 <xs:attribute name="isDeletedColumn" type="xs:boolean"
use="optional" default="false"/>

 <xs:attribute name="column" type="xs:integer" use="optional"/>

 <xs:attribute name="spanInfoOriginal" type="xs:string"
use="optional"/>

 <xs:attribute name="spanInfoModified" type="xs:string"
use="optional"/>

 <xs:attribute name="spannedInOriginal" type="xs:boolean"
use="optional"/>

 <xs:attribute name="spannedInModified" type="xs:boolean"
use="optional"/>

 <xs:attribute name="isMerged" type="xs:boolean"
use="optional"/>

 </xs:complexType>

 <xs:element name="textbox" type="textboxT"/>

 <xs:complexType name="textboxT">

 <xs:group ref="content"/>

 </xs:complexType>

 <xs:element name="paraMarker" type="paraMarkerT"/>

 <xs:complexType name="paraMarkerT">

 <xs:attribute name="listNumber" type="xs:string"
use="optional"/>

 <xs:attributeGroup ref="insertedDeletedAttrs"/>

 <xs:attribute name="isInsertedListItem" type="xs:boolean"
use="optional" default="false"/>

 <xs:attribute name="listLevel" type="xs:int" use="optional"/>

 <xs:attribute name="listId" type="xs:int" use="optional"/>

 </xs:complexType>

Change Summary Information

58

 <xs:complexType name="runT" mixed="true">

 <xs:attribute name="font" type="xs:string" use="required"/>

 <xs:attribute name="wasListNum" type="xs:boolean"
default="false" use="optional"/>

 <xs:attribute name="wasField" type="xs:boolean" default="false"
use="optional"/>

 <xs:attribute name="rtl" type="xs:boolean" default="false"
use="optional"/>

 </xs:complexType>

 <xs:complexType name="commentT">

 <xs:group ref="content"/>

 <xs:attributeGroup ref="insertedDeletedAttrs"/>

 </xs:complexType>

 <xs:element name="comment" type="commentT"/>

 <xs:element name="footNote" type="footEndNoteT" />

 <xs:element name="endNote" type="footEndNoteT" />

 <xs:complexType name="footEndNoteT">

 <xs:group ref="content"/>

 <xs:attributeGroup ref="insertedDeletedAttrs"/>

 </xs:complexType>

 <xs:complexType name="headerfooterT">

 <xs:group ref="content"/>

 <xs:attribute name="type" type="hdrftrType" use="required"/>

 <xs:attributeGroup ref="insertedDeletedAttrs"/>

 </xs:complexType>

 <xs:simpleType name="hdrftrType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="left"/>

Change Summary Information

59

 <xs:enumeration value="right"/>

 <xs:enumeration value="first"/>

 <xs:enumeration value="main"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="field" type="fieldT"/>

 <xs:complexType name="fieldT">

 <xs:sequence>

 <xs:element type="fieldCodeT" name="fieldCode"/>

 <xs:element ref="fieldResult" minOccurs="0"/>

 </xs:sequence>

 <xs:attributeGroup ref="insertedDeletedAttrs"/>

 </xs:complexType>

 <xs:complexType name="fieldCodeT">

 <xs:sequence maxOccurs="unbounded" minOccurs="1">

 <xs:choice>

 <xs:element ref="field"/>

 <xs:element name="run" type="runT"/>

 <xs:element ref="paraMarker"/>

 <xs:element name="blob" type="blobT"/>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="fieldResult" type="fieldResultT"/>

 <xs:complexType name="fieldResultT">

 <xs:group ref="content"/>

 </xs:complexType>

 <xs:element name="bkmk" type="bkmkT"/>

 <xs:complexType name="bkmkT">

 <xs:attribute name="name" type="xs:string" use="required"/>

Change Summary Information

60

 <xs:attribute name="start" type="xs:boolean" use="required"/>

 </xs:complexType>

</xs:schema>

Character set values

ANSI_CHARSET 0

DEFAULT_CHARSET 1

SYMBOL_CHARSET 2

SHIFTJIS_CHARSET 128

HANGEUL_CHARSET 129

HANGUL_CHARSET 129

GB2312_CHARSET 134

CHINESEBIG5_CHARSET 136

OEM_CHARSET 255

JOHAB_CHARSET 130

HEBREW_CHARSET 177

ARABIC_CHARSET 178

GREEK_CHARSET 161

TURKISH_CHARSET 162

VIETNAMESE_CHARSET 163

THAI_CHARSET 222

EASTEUROPE_CHARSET 238

RUSSIAN_CHARSET 204

MAC_CHARSET 77

BALTIC_CHARSET 186

Change Summary Information

61

ChangeT values

0 DELETION

1 MOVESOURCE

2 MOVEDESTINATION

3 INSERTION

4 FORMAT_CHANGE

13 MOVEDDELETION

14 STYLECHANGE_TEXT

15 STYLECHANGE_LABEL

Code Samples

Extracting change summary information

Overview

When Workshare Compare Server compares documents, it generates a redline document
and a change summary information document. The change summary information can be
retrieved in either the RedlineML or the RedlineJSON format.

Once the change summary information has been retrieved you can extract information
about the changes. The following code samples will extract the number of different types of
changes such as:

 Total Changes Count

 Insertion Changes Count

 Deletion Changes Count

 Moved From Changes Count

 Moved To Changes Count

 Style Changes Count

 Format Changes Count

RedlineML

RedlineML is an XML format that contains the content of the redline document. You can use
any language to access XML files but this code sample uses C# to access the change
summary information in the RedlineML document.

Change Summary Information

62

Example (C#)

using System;

using System.Linq;

using System.Xml;

namespace ReadRedlineML

{

 class Program

 {

 private enum ChangeType

 {

 Deletion = 0,

 MoveSource = 1,

 MoveDestination = 2,

 Insertion = 3,

 FormatChange = 4,

 MovedDeletion = 13,

 StyleChangeText = 14,

 StyleChangeLabel = 15

 }

 static void Main(string[] args)

 {

 // Pass in the redline

// Without any error checking

 string xml = System.IO.File.ReadAllText(args[0]);

 XmlDocument doc = new XmlDocument();

 doc.LoadXml(xml);

 XmlNodeList nodes = doc.GetElementsByTagName("change");

 var values = nodes.Cast<XmlNode>().Select(s => new

 {

 Name = s.Name,

Change Summary Information

63

 Number =
Convert.ToInt32(s.Attributes?["number"].Value),

 ChangeType =
Convert.ToInt32(s.Attributes?["type"].Value)

 }).ToList();

 int totalChangesCount = values.Count();

 int insertionChangesCount = values.Count(w =>
w.ChangeType == (int)ChangeType.Insertion);

 int deletionChangesCount = values.Count(w =>
w.ChangeType == (int)ChangeType.Deletion);

 int movedFromChangesCount = values.Count(w =>
w.ChangeType == (int)ChangeType.MoveSource);

 int movedToChangesCount = values.Count(w =>
w.ChangeType == (int)ChangeType.MoveDestination);

 int formatChangesCount = values.Count(w => w.ChangeType
== (int)ChangeType.FormatChange);

 int styleChangesCount = values.Count(w => w.ChangeType
== (int)ChangeType.StyleChangeLabel || w.ChangeType ==
(int)ChangeType.StyleChangeText);

 Console.WriteLine($"Number of total changes:
{totalChangesCount}");

 Console.WriteLine($"Number of inserted changes:
{insertionChangesCount}");

 Console.WriteLine($"Number of deleted changes:
{deletionChangesCount}");

 Console.WriteLine($"Number of moved from changes:
{movedFromChangesCount}");

 Console.WriteLine($"Number of moved to changes:
{movedToChangesCount}");

 Console.WriteLine($"Number of format changes:
{formatChangesCount}");

 Console.WriteLine($"Number of style changes:
{styleChangesCount}");

 }

 }

}

Change Summary Information

64

RedlineJSON

The RedlineJSON is a JSON format which contains the content of the redline document.
You can use any language to access JSON files but this code sample uses JavaScript to
access the change summary information in the RedlineJSON document.

Example (JavaScript)

<!DOCTYPE html>

<html>

<head>

 <script>

 window.onload = function () {

 var changeList = [];

document.getElementById('file').addEventListener('change',
onChange);

 function onChange(event) {

 var reader = new FileReader();

 reader.onload = onReaderLoad;

 reader.readAsText(event.target.files[0]);

 }

 function onReaderLoad(event) {

 var obj = JSON.parse(event.target.result);

 getChangesList(obj);

 extractSummary(obj);

 }

 function getChangesList(o) {

 for (var key in o) {

 if (o[key] !== null && typeof (o[key]) ==
"object") {

 if (o[key].hasOwnProperty('_type')

&& o[key]["_type"] == "change") {

 changeList.push(o[key]);

Change Summary Information

65

 }

 getChangesList(o[key]);

 }

 }

 }

 function extractSummary(obj) {

 var totalChangesCount = changeList.length;

 var insersionChangesCount =
changeList.filter(function (c) {

 return c.type == "insertion"}).length;

 var deletionChangesCount = changeList.filter(function
(c) {

 return c.type == "deletion"}).length;

 var movedFromChangesCount =
changeList.filter(function (c) {

 return c.type == "movesource"}).length;

 var movedToChangesCount = changeList.filter(function
(c) {

 return c.type == "movedestination"}).length;

 var formatChangesCount = changeList.filter(function
(c) {

 return c.type == "format_change"}).length;

 var styleChangesCount = changeList.filter(function
(c) {

 return c.type == "stylechange_label"

|| c.type == "stylechange_text"}).length;

 var summary = 'Number of total changes: ' +
totalChangesCount + '\n' +

Change Summary Information

66

 'Number of inserted changes: ' +
insersionChangesCount + '\n' +

 'Number of deleted changes: ' +
deletionChangesCount + '\n' +

 'Number of moved from changes: ' +
movedFromChangesCount + '\n' +

 'Number of moved to changes: ' +
movedToChangesCount + '\n' +

 'Number of format changes: ' +
formatChangesCount + '\n' +

 'Number of style changes: ' + styleChangesCount
+ '\n';

 alert(summary);

 }

 };

 </script>

</head>

<body>

 <input id="file" type="file" />

 <p>Select a RedLine JSON file</p>

</body>

</html>

Change Summary Information

67

Workshare Ltd.
© 2019. Workshare Ltd. All rights reserved.

Copyright
Workshare Professional and Workshare DeltaView are registered trademarks of Workshare Ltd. Workshare Compare,
Workshare Protect, Workshare 3, Workshare DeltaServer, SafetyGain, and the Workshare logo are trademarks of
Workshare Ltd. All other trademarks are those of their respective holders.

Trademarked names may appear throughout this guide. Instead of listing these here or inserting numerous trademark
symbols, Workshare wishes to state categorically that no infringement of intellectual or other copyright is intended and
that trademarks are used only for editorial purposes.

Disclaimer
The authors/publishers of this guide and any associated help material have used their best efforts to ensure accuracy
and effectiveness. Due to the continuing nature of software development, it may be necessary to distribute updated help
from time to time. The authors would like to assure users of their continued best efforts in supplying the most effective
help material possible.

The authors/publishers, however, make no warranty of any kind, expressed or implied, with regard to Workshare
programs or help material associated with them, including this guide. The authors/publishers shall not be liable in the
event of incidental or consequential damages in connection with, or arising out of, the programs or associated help
instructions.

Revisions
Published for Workshare Compare Server 9.5: 14/9/18
Revised for Workshare Compare Server 9.5.1: 8/1/18
Revised for Workshare Compare Server 9.5.2: 17/5/18
Revised for Workshare Compare Server 9.5.3: 6/12/18
Revised for Workshare Compare Server 9.5.4: 18/2/19
Revised for Workshare Compare Server 9.5.5: 29/3/19
Revised for Workshare Compare Server 9.5.6: 22/5/19
Revised for Workshare Compare Server 9.5.7: 28/6/19
Revised for Workshare Compare Server 9.6: 20/8/19
Revised for Workshare Compare Server 9.7: 25/10/19

Workshare Ltd., 20 Fashion Street, London E1 6PX www.workshare.com

http://www.workshare.com/

	Introducing Workshare Compare Server
	Communicating with Workshare Compare Server
	Overview
	Types of Comparison
	Choosing which type of comparison to run

	Immediate Comparisons
	GET request example
	POST request example

	Queued Asynchronous Comparisons
	Making a queued comparison request
	Handling the response to a queued comparison request

	Data Storage on Workshare Compare Server
	DVJS Comparisons
	What is DVJS?
	Getting started with DVJS
	The DVJS APIs
	Starting DVJS comparisons
	Displaying a DVJS comparison
	Customizing DVJS
	Customizing which elements of the UI are visible
	Customizing the language of the UI
	Customizing the toolbar
	Customizing the behavior of the toolbar
	Accept change functionality

	Accept/Reject Changes from the API
	Merging Multiple Modified Documents
	POST request example

	RedlineJSON
	RedlineML
	RedlineML Schema
	Character set values
	ChangeT values

	Code Samples
	Extracting change summary information

